作者单位
摘要
1 北京大学 集成电路学院, 北京 100871
2 北京微电子技术研究所, 北京 100076
折叠式共源共栅和Class AB(FC-AB)结构的运算放大器被广泛研究和使用, 但是其结构应用的多变性使设计者难以快速准确地设计出符合要求的电路。文章提出了一种标准化的运算放大器设计流程, 设计者可以根据应用需求快速灵活地设计目标电路。以电流分配作为设计流程的起始点和调整点, 以核心参数作为判据或约束项, 进行迭代优化, 最终通过相关电流和跨导确定器件尺寸。以流程图形式提出了低噪声运放的设计流程, 关键器件尺寸的理论值和设计值平均误差为1148%。根据该流程设计了一种低噪声运放, 并采用018 μm CMOS工艺进行了加工。运放关键电学参数都满足设计要求, 其等效输入噪声为108 nV/√Hz, 与目标值偏差18%。
设计流程 折叠共源共栅 Class AB级输出 低噪声运算放大器 design procedure folded cascode class AB output low noise operational amplifier 
微电子学
2023, 53(4): 595
作者单位
摘要
1 南京工业大学 柔性电子(未来技术)学院,江苏 南京 211816
2 南京医科大学 附属肿瘤医院,江苏 南京 210009
活性酶普遍存在于各种生命活动中,一些疾病与活性酶的异常表达息息相关,精确检测酶的表达水平以及原位成像,为相关疾病的诊断与治疗提供了有力的判断依据。至今,大量的检测技术已经开发出来,其中以分子荧光探针为代表的光学技术具有非侵袭性以及灵敏度高、检测限低、响应时间快和生物相容性好等优势,在检测活性酶上备受青睐。然而,在使用分子荧光探针检测时,由于小分子容易在酶活性位点发生扩散,无法定位,导致探针时空分辨率较差。因此,为提高成像检测的时空分辨率、降低背景干扰和假阳性,原位成像的设计理念随之提出,已成为生物光学成像的研究热点之一。目前,研究者已报道多种分子荧光探针用于酶的原位成像的设计并取得显著效果。本文将深入介绍用于活性酶检测的分子荧光探针的设计策略及其在原位成像中的研究进展,希望为该领域的研究者们提供一些启发。
原位成像 分子荧光探针 活性酶 研究进展 in situ imaging small-molecule fluorescent probes enzyme recent progress 
发光学报
2023, 44(11): 2057
Author Affiliations
Abstract
1 Zhejiang University, College of Optical Science and Engineering, Center for Optical and Electromagnetic Research, International Research Center for Advanced Photonics, State Key Laboratory for Modern Optical Instrumentation, Hangzhou, China
2 Zhejiang University, Ningbo Research Institute, Ningbo, China
3 Zhejiang University, Jiaxing Research Institute, Intelligent Optics and Photonics Research Center, Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing, China
Dealing with the increase in data workloads and network complexity requires efficient selective manipulation of any channels in hybrid mode-/wavelength-division multiplexing (MDM/WDM) systems. A reconfigurable optical add-drop multiplexer (ROADM) using special modal field redistribution is proposed and demonstrated to enable the selective access of any mode-/wavelength-channels. With the assistance of the subwavelength grating structures, the launched modes are redistributed to be the supermodes localized at different regions of the multimode bus waveguide. Microring resonators are placed at the corresponding side of the bus waveguide to have specific evanescent coupling of the redistributed supermodes, so that any mode-/wavelength-channel can be added/dropped by thermally tuning the resonant wavelength. As an example, a ROADM for the case with three mode-channels is designed with low excess losses of <0.6, 0.7, and 1.3 dB as well as low cross talks of < - 26.3, -28.5, and -39.3 dB for the TE0, TE1, and TE2 modes, respectively, around the central wavelength of 1550 nm. The data transmission of 30 Gbps / channel is also demonstrated successfully. The present ROADM provides a promising route for data switching/routing in hybrid MDM/WDM systems.
reconfigurability hybrid multiplexing subwavelength grating silicon photonics 
Advanced Photonics Nexus
2023, 2(6): 066004
Author Affiliations
Abstract
1 East China Normal University, School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, Shanghai, China
2 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory of Materials for High-Power Laser, Shanghai, China
3 Shanghai University, Department of Physics, Shanghai, China
4 Wuhan University, School of Physics and Technology, Center for Nanoscience and Nanotechnology, Wuhan, China
5 University of Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, Hangzhou, China
6 Chongqing Institute of East China Normal University, Chongqing Key Laboratory of Precision Optics, Chongqing, China
The collective response of macroscopic quantum states under perturbation is widely used to study quantum correlations and cooperative properties, such as defect-induced quantum vortices in Bose–Einstein condensates and the non-destructive scattering of impurities in superfluids. Superfluorescence (SF), as a collective effect rooted in dipole–dipole cooperation through virtual photon exchange, leads to the macroscopic dipole moment (MDM) in high-density dipole ensembles. However, the perturbation response of the MDM in SF systems remains unknown. Echo-like behavior is observed in a cooperative exciton ensemble under a controllable perturbation, corresponding to an initial collapse followed by a revival of the MDM. Such a dynamic response could refer to a phase transition between the macroscopic coherence regime and the incoherent classical state on a time scale of 10 ps. The echo-like behavior is absent above 100 K due to the instability of MDM in a strongly dephased exciton ensemble. Experimentally, the MDM response to perturbations is shown to be controlled by the amplitude and injection time of the perturbations.
superfluorescence polariton photoluminescence exciton 
Advanced Photonics
2023, 5(5): 055001
Wangqi Mao 1,2Xinyu Gao 3Bo Li 1,2Yaqiang Zhang 3[ ... ]Long Zhang 1,2,3,5,*
Author Affiliations
Abstract
1 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
2 Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 Hangzhou Institute for Advanced Study, Chinese Academy of Sciences, Hangzhou 310024, China
4 e-mail: hongxingd@siom.ac.cn
5 e-mail: lzhang@siom.ac.cn
Optical physical unclonable functions (PUFs) have emerged as a promising strategy for effective and unbreakable anti-counterfeiting. However, the unpredictable spatial distribution and broadband spectra of most optical PUFs complicate efficient and accurate verification in practical anti-counterfeiting applications. Here, we propose an optical PUF-based anti-counterfeiting label from perovskite microlaser arrays, where randomness is introduced through vapor-induced microcavity deformation. The initial perovskite microdisk laser arrays with regular positions and uniform sizes are fabricated by femtosecond laser direct ablation. By introducing vapor fumigation to induce random deformations in each microlaser cavity, a laser array with completely uneven excitation thresholds and narrow-linewidth lasing signals is obtained. As a proof of concept, we demonstrated that the post-treated laser array can provide fixed-point and random lasing signals to facilitate information encoding. Furthermore, different emission states of the lasing signal can be achieved by altering the pump energy density to reflect higher capacity information. A threefold PUF (excited under three pump power densities) with a resolution of 5×5 pixels exhibits a high encoding capacity (1.43×1045), making it a promising candidate to achieve efficient authentication and high security with anti-counterfeiting labels.
Photonics Research
2023, 11(7): 1227
Bo Li 1,2Wangqi Mao 1,2,5,*Shuang Liang 3Yifeng Shi 4[ ... ]Long Zhang 1,2,7,*
Author Affiliations
Abstract
1 Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China
2 Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
4 School of Microelectronics, Shanghai University, Shanghai 201800, China
5 e-mail: mwangqi@mail.ustc.edu.cn
6 e-mail: hongxingd@siom.ac.cn
7 e-mail: lzhang@siom.ac.cn
Lead halide perovskite microlasers have shown impressive performance in the green and red wavebands. However, there has been limited progress in achieving blue-emitting perovskite microlasers. Here, blue-emitting perovskite-phase rubidium lead bromide (RbPbBr3) microcubes were successfully prepared by using a one-step chemical vapor deposition process, which can be utilized to construct optically pumped whispering gallery mode microlasers. By regulating the growth temperature, we found that a high-temperature environment can facilitate the formation of the perovskite phase and microcubic morphology of RbPbBr3. Notably, blue single-mode lasing in a RbPbBr3 microcubic cavity with a narrow linewidth of 0.21 nm and a high-quality factor (2200) was achieved. The obtained lasing from RbPbBr3 microlasers also exhibited an excellent polarization state factor (0.77). By modulating the mixed-monovalent cation composition, the wavelength of the microlaser could be tuned from green (536 nm) to pure blue (468 nm). Additionally, the heat stability of the mix-cation perovskite was better than that of conventional CsPbBr3. The stable and high-performance blue single-mode microlasers may thus facilitate the application of perovskite lasers in blue laser fields.
Photonics Research
2023, 11(6): 1067
Author Affiliations
Abstract
1 Centre for Optical and Electromagnetic Research, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 Imec USA, Nanoelectronics Design Center, Inc., 194 Neocity Way, Kissimmee, FL34744, USA
3 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications, such as lidar, radar, and artificial intelligence. Silicon photonics has unique advantages of ultra-high integration density as well as CMOS compatibility, and thus makes it possible to develop large-scale programmable optical signal processors. The challenge is the high silicon waveguides propagation losses and the high calibration complexity for all tuning elements due to the random phase errors. In this paper, we propose and demonstrate a programmable silicon photonic processor for the first time by introducing low-loss multimode photonic waveguide spirals and low-random-phase-error Mach-Zehnder switches. The present chip-scale programmable silicon photonic processor comprises a 1×4 variable power splitter based on cascaded Mach-Zehnder couplers (MZCs), four Ge/Si photodetectors, four channels of thermally-tunable optical delaylines. Each channel consists of a continuously-tuning phase shifter based on a waveguide spiral with a micro-heater and a digitally-tuning delayline realized with cascaded waveguide-spiral delaylines and MZSs for 5.68 ps time-delay step. Particularly, these waveguide spirals used here are designed to be as wide as 2 μm, enabling an ultralow propagation loss of 0.28 dB/cm. Meanwhile, these MZCs and MZSs are designed with 2-μm-wide arm waveguides, and thus the random phase errors in the MZC/MZS arms are negligible, in which case the calibration for these MZSs/MZCs becomes easy and furthermore the power consumption for compensating the phase errors can be reduced greatly. Finally, this programmable silicon photonic processor is demonstrated successfully to verify a number of distinctively different functionalities, including tunable time-delay, microwave photonic beamforming, arbitrary optical signal filtering, and arbitrary waveform generation.
silicon photonics programmable photonic integrated circuit waveguide delay lines Mach-Zehnder interferometer 
Opto-Electronic Advances
2023, 6(3): 220030
Author Affiliations
Abstract
1 State Key Laboratory for Modern Optical Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
2 ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
3 Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
A compact on-chip reconfigurable multichannel amplitude equalizer based on cascaded elliptical microrings is proposed and demonstrated experimentally. With the optimized structure of the elliptical microring with adiabatically varied radii/widths, the average excess loss for each channel in the initialized state is measured to be less than 0.5 dB, while the attenuation dynamic range can be over 20 dB. Flexible tunability through the overlapping of the resonance peaks of adjacent wavelength-channels enables even higher attenuation dynamic ranges up to 50 dB. Leveraging the thermo-optic effect and fine wavelength-tuning linearity, precise tuning of the resonance peak can be implemented, enabling dynamic power equalization of each wavelength-channel in wavelength-division-multiplexing (WDM) systems and optical frequency combs. The proposed architecture exhibits excellent scalability, which can facilitate the development of long-haul optical transport networks and high-capacity neuromorphic computing systems, while improving the overall performance of optical signals in WDM-related systems.
Photonics Research
2023, 11(5): 742
杨勇 1,2董浩 1,2桑瑶烁 1,2李志刚 1,2[ ... ]王澍 1,2,*
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽 合肥 230031
2 中国科学技术大学研究生院科学岛分院,安徽 合肥 230031
细菌拉曼光谱信号弱、相似度高且易被噪声干扰,使用传统机器学习方法对其分类时必须进行繁杂的光谱预处理,效率低下。为提高细菌拉曼光谱分类的准确率和效率,提出了一种基于密集连接的一维卷积神经网络模型Raman-net,无需额外的光谱预处理就能有效完成光谱分类。实验结果表明,Raman-net对Bacteria-ID公开数据集中30种细菌低信噪比拉曼光谱的分类准确率为84.26%,显著高于传统机器学习方法及对比方法。对于碳青霉烯类抗生素敏感和耐药的2种肺炎克雷伯菌表面增强拉曼光谱,Raman-net取得了99.16%的分类准确率。这表明对于细菌的普通拉曼光谱和表面增强拉曼光谱,Raman-net无需光谱预处理就能取得较好的分类效果,为致病菌的拉曼光谱鉴定提供了一种快速有效的方法。
光谱学 拉曼光谱 光谱鉴别 机器学习 致病菌 
激光与光电子学进展
2023, 60(1): 0130003
作者单位
摘要
中国科学院上海光学精密机械研究所,上海 201800
中红外波段激光光源在环境监测、材料加工、外科手术、**等领域发挥重要作用。泵浦低损耗、高浓度Er3+掺杂ZBLAN(Er∶ZBLAN)光纤是产生近3 μm激光输出的主要手段之一,相较于其他同波段固态激光器,Er∶ZBLAN光纤激光器具有易集成、效率高,可采用激光二极管直接泵浦等优势,性能日渐提升的Er∶ZBLAN光纤激光器有望成为3 μm波段最先发展成熟、走向应用的激光光源。本文主要介绍Er∶ZBLAN光纤激光器工作原理和发展现状,对三种不同的Er∶ZBLAN光纤激光器存在的问题进行分析和总结,最后对Er∶ZBLAN光纤激光器发展趋势进行展望。
中红外 激光输出 能级结构 Er∶ZBLAN光纤 连续光纤激光器 脉冲光纤激光器 波长可调谐光纤激光器 midinfrared laser output energy level structure Er∶ZBLAN fiber continuous fiber laser pulsed fiber laser wavelengthtunable fiber laser 
硅酸盐通报
2022, 41(11): 3733

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!